
Dynamically Iterative MapReduce

Wei-Tsong Lee, Ming-Zhi Wu, Hsin-Wen Wei*, Fang-Yi Yu , Yu-Sun Lin

Department of Electrical Engineering, TamKang University, Taiwan

Chung-Shan Institute of Science and Technology, Taiwan, R.O.C

hwwei@mail.tku.edu.tw

Abstract
MapReduce is a distributed and parallel

computing model for data-intensive tasks with

features of optimized scheduling, flexibility, high

availability, and high manageability. MapReduce

can work on various platforms; however,

MapReduce is not suitable for iterative programs

because the performance may be lowered by frequent

disk I/O operations. In order to improve system

performance and resource utilization, we propose a

novel MapReduce framework named Dynamically

Iterative MapReduce (DIMR) to reduce numbers of

disk I/O operations and the consumption of network

bandwidth by means of using dynamic task allocation

and memory management mechanism. We show that

DIMR is promising with detail discussions in this

paper.

Keywords: Dynamically Iterative MapReduce, K-Means,

Particle Swarm Optimization (PSO), Genetic Algorithm

(GA) , Simulated Annealing (SA).

1 Introduction
Information technology industry has been

changed by cloud computing technology [1].

Programmers can just focus on developing software

to improve service quality and application

performance instead of upgrading their hardware. By

renting computing resources from cloud service

providers [2], IT industry does not need to purchase

or construct infrastructure. Cloud computing

technology also reduces manpower and the cost of

upgrading software and hardware. Cloud computing

includes various services stored in remote

environments [3], and all users only have to know is

to choose the service and use it via networks. To

fulfill the requirements of users, cloud computing

techniques are needed to carry out a large number of

computations with highly parallel and distributed

processing.

MapReduce [4] framework is one of

well-known cloud computing techniques that can

help the user to complete the task efficiently,

especially in dealing with a large number of batch

files. The hardware of nodes used in MapReduce

computation does not need to be as good as

high-performance computing computer, but just

low-cost, low-performance computers like what we

use in daily life. MapReduce runtime system

automatically divide input file into the number of

copies, and automatically deal these data with

scheduling, load balancing, fault tolerance, and

managing, and so on. MapReduce allows the user to

finish their job in parallel without any knowledge of

the distribution of their work. Users only need to

write Map and Reduce function, and MapReduce

Execution System function, and then the job will be

completed according to the function written by the

users.

Many optimization solvers, such as K-Means

[5][20], Particle Swarm Optimization (PSO) [6][19],

Genetic Algorithm (GA) [7], Simulated Annealing

(SA) [8], and image processing application [18], need

to process large amounts of information, and

numerous iterations as well as high-density

computing. In addition, many analysis and statistical

results of the Web content [16], the commercial

transaction information, and Bioinformatic data are

needed for various applications, which require a lot

of time for processing large amounts of data.

However, single operational unit does not have the

ability to satisfy the requirement for processing large

amounts of data. Therefore, MapReduce will be the

solution for the applications that need large amount

of data computation. Using MapReduce can decrease

the overall processing time, increase the efficiency,

reliability, and enhance integrity by fault tolerance

mechanism.

While using MapReduce can solve the problem

of a single computing unit, but the traditional

computing architecture of MapReduce will make the

performance of some applications like optimization

algorithms degrade. Since optimization algorithms

need to go through numerous iterations and require

high-density computing to find the final answer, the

large amount of data migration and pass overhead

will decline system performance. In addition, the

design of traditional MapReduce aims to handle large

and parallelable tasks, not designed for handling

tasks with multiple iterations of data. Hence, to

improve the performance of using MapReduce to

handle a program with iterative structure will be an

urgent problem that needs to be solved. However, the

computing nodes in the MapReduce operational

environment do not have the same computing

capability, i.e., CPU computing power, storage space,

*Corresponding author: Hsin-Wen Wei; E-mail: hwwei@mail.tku.edu.tw

and network bandwidth, are not same on every node.

Using a heterogeneous environment increases the

difficulty of the assignment and affects the overall

operational efficiency and reliability. Therefore, this

paper proposes a new type of MapReduce

architecture called Dynamically Iterative

MapReduce (DIMR), and it aims to reduce the

overhead of passing data between large numbers of

iterations and to increase the performance of

applications on the MapReduce runtime system using

the heterogeneous environment.

The remainder of this paper is organized as

follows. We first give an overview of the well-known

MapReduce runtimes in Section2. Previous works

are presented and discussed in Section 3. Section 4

presents the DIMR architecture and workflow. The

experimental results are shown in Section 5 and the

paper is concluded in Section 6.

2 Background
2.1 Hadoop MapReduce

The MapReduce architecture in Hadoop [9] is

shown in Fig. 1. MapReduce is composed by the one

Master as well as a number of Map blocks and

Reduce blocks. MapReduce works through the

several stages of operation to complete the data

processing. First, Master Node will receive the

command of the user to start a MapReduce program

and have knowledge of the position and the size of

the input file in HDFS [10]. Then, Master Node will

assign the idle Worker Node to execute Map function

or Reduce function. Master Node will distribute input

file evenly according to the number of Map functions,

and the file blocks assigned to Map function are

called split. Therefore, the number of splits generated

by Master Node is equal to the number of Map

functions. Note, Master Node does not transfer the

input file directly to the Map Node, but inform Map

Node about the location and the size of needed file. If

Master Node has distributed tasks to all available

Worker Node, then Master Node constantly monitor

the states of all Map function for finding the idle

Worker Node. Master Node will continuously assign

the task to idle Worker Node or a Worker Node that

finish its work until all tasks are completed. The Map

function in Map Node will receive the location and

size of split from Master Node and issue the

requirement over HTTP to ask for data in HDFS.

Map function is initiative to retrieve data from HDFS;

nevertheless, each Map function in this step is carried

out simultaneously and in accordance with

user-defined way to deal with these data.

The Reduce function in Reduce Node will

receive the message sent by Master Node. The

Reduce function will know the location and size of

the intermediate data by the message, and issue the

requirement over HTTP to ask for the intermediate

data which is assigned by Map Node. The time

required for Reduce function to receive the message

from Master Node determined by the processing

speed of Map Node, so Reduce function is

non-synchronized receiving and processing

intermediate data. Next step, Reduce function will

simplify these data according to the user definition.

In the end, Reduce function will finish the

computation, and produce an output file and store it

into HDFS. Then, Worker Node will notify the

Master Node that task is completed and waiting for

the next task. When MapReduce components

complete all the tasks, it means the job has finished,

and then they will continue to the next work.

Split 0
Map 0

Split 1

Split 2

Split N

‧
‧
‧

Master

Map 1

Map 2

Assign

Map Task
Control Plane

Assign

Redcue Task

Map

Phase

Reduce

Phase
Shuffle

Phase

Input

Data

Data Plane

Intermediate

Data 0
Reduce0

Output

File 0

Reduce 1

Reduce 2

Intermediate

Data 1

Intermediate

Data 2

Output

File 1

Output

File 2

Output

Data

 Figure 1 Hadoop MapReduce Architecture

2.2 Twister
Twister [11], which is a MapReduce runtime,

aims to solve the overhead caused by hierarchical

MapReduce applications, since hierarchical

MapReduce must constantly and repeatedly to create

a new Map function and Reduce function. The

architecture of Twister as shown in Fig. 2 makes it

has better performance than other MapReduce

framework in dealing with repeated (iterative)

calculation. When Twister receives the computing

request from users, it will distribute all tasks and

execute Map function and Reduce function. In the

next step, Twister Worker Node will start to execute

the tasks. Map function in the Twister will read the

local disks or remote disks to find data which is

needed to be computed. After Twister receives the

data, the Map function starts the computation and

produce intermediate data as an output file.

Intermediate data in Twister is distributed to memory

of each Worker Node. When the Map function in

Twister finishes the job, intermediate data will be

directly transferred to appropriate Reduce function.

M

M

R

ConfigureMappers()

ConfigureReducers()

While(Condition){

UpdateCondition()

} //End While

RunMapReduce()

MM

RRR

M

R

M

。。。

。。。

C

Iterations

Worker Pool

Worker Pool

In Memory

Cache

Figure 2 Twister MapReduce Architecture [11]

The Reduce function in Twister will store

intermediate data in the memory cache until Reduce

function execution is completed. Note that, these

intermediate data can also be stored in the local disk.

After the Reduce function in Twister completes the

task, and then the output file will be sent to the

Combiner. The main job of Combiner in the Twister

is to combine the result generated by Reduce function,

and produce a new output file to the Map function.

When the Combiner in Twister finishes the

combination of the output files that Reduce functions

completed, it will transfer the result to next Map

function to start next MapReduce iteration.

Twister is different from other MapReduce

framework, it uses a publish/subscribe messaging

architecture for communication and data

transmission. In addition, the intermediate data

generated by Map function in Twister will be

transferred directly to the Reduce function and the

output file generated by Reduce function in Twister

will be directly transferred to the Combiner.

Therefore, Twister architecture effectively reduces

overhead of storing data into storage and passing

control messages. In other words, Twister saves the

time spent on I/O.

3 Related Work
To increase the performance of handling

optimization problems, there are many optimization

algorithms implemented in parallel way and

computed in distributed environment. There are some

important MapReduce systems and methods address

the data migration issues in optimization problems

and network I/O bottleneck [17]. Although these

methods are faster than that using single-node

operation, they are not efficient solutions in using the

whole system resources. In [6], the authors proposed

MRPSO to find the best answer of PSO problem by

writing a simple Map/Reduce function and utilize the

Map function to find the local optimum and then call

the Reduce function to find the global optimum. The

operating environment used in [6] is Hadoop

basically, so the data completed by Reduce function

is written to HDFS. Then, the Map function will read

the previous generated file from HDFS and do the

same job as above. It takes a lot of time for Map

function and Reduce function to access data from

HDFS, and therefore degrades the system

performance.

A MapReduce operation method called

MRPGA is proposed in [12], which aims to complete

the calculation of the GA by parallel and distributed

computing. The MRPGA finds the best answer by

two-phase Reduce. In [12], the Reduce function of

the second phase must withstand a lot of input

pressure, and it will inevitably result in inferior

system performance. Moreover, its operating

environment is like Hadoop, so the output files must

be stored via HDFS, and the Map function must

access the input files from HDFS. This will cause

system I/O busy, and also decrease the performance.

The proposed method in [13] combined two

optimization algorithms PSO and GA to find the best

answer quickly and accurately. The solution in [13]

utilizes the Map function to execute PSO part and the

Reduce function to execute GA mutation and

cross-over. Although the solution in [13] makes the

computing speed up, but Hadoop is not suitable

iterative program originally, so data is not properly

utilized.

An algorithm called Adaptive Disk I/O

Scheduling for MapReduce is proposed in [14],

which adjust I/O computing process to improve the

overall performance and reduce the I/O bottleneck. In

[14], the authors present the Task Scheduler

architecture, which optimizes various MapReduce

applications and manage the I/O process, as well as

the resources required for Map functions and Reduce

functions. The experimental results show that the

performance is improved more than 25%.

Nevertheless, the architecture is not suitable for

applications with large numbers of iterations, which

will lead to performance degradation.

Though, above solutions address the problems

caused by iterative programs, they does not utilize the

resource at each node effectively in fact. Therefore,

we proposed a novel MapReduce runtime, called

Dynamically Iterative MapReduce (DIMR), to solve

the overhead caused by multiple applications with

iterative structures.

4 Dynamically Iterative MapReduce
4.1 DIMR Overview

This paper presents a MapReduce framework

that can dynamically determine the location of

output data to reduce most of execution time of

iterative programs, is called Dynamically Iterative

MapReduce (DIMR). DIMR can reduce the

bottlenecks of I/O operations in iterative

MapReduce applications which require a large

amount of iterative I/O operations, such as the

optimization algorithm, recursive, heuristic, and so

on. DIMR is shown as Fig. 3, which is composed of

a Master Node and a resource pool of multiple Work

Nodes, and file system. The main controller of

DIMR is in the Master Node, which manages the

resources, tasks distribution, error recovery, and the

most important is to collect the usage of each node

for performance evaluation. The Master of DIMR

will follow the settings to allot tasks to Work Nodes

to execute Map function and Reduce function.

Master will instruct Work Node to execute first

iteration, and collect the information of system

performance; finally to allot resources and tasks by

the performance diagnosis. The performance of

system is evaluated in each iteration and then

Master will decide the operation in next iteration

according to the tasks efficiency.

Master

Assign

Map

Task

Assign

Redcue

Task

Work

Node Work

NodeWork

Node

Work

Node

Work

Node

Work

Node

Work

Node

Work

Node

Work

Node

Input Data
Resource Pool

Output Data

Figure 3 DIMR Overview

Different from the conventional MapReduce, in

DIMR, Work Node acquires unprocessed data from

file system and places the results into the Memory,

after it finish the computation, it will then transfer

the result directly to the next Work Node. This way

can effectively reduce the time of writing data into

the local disk and read data from the remote disk.

Therefore, DIMR can achieve a better performance

by reducing the overhead of network I/O through

controlling the assignment of Map function and

Reduce function. Overall, DIMR has excellent

performance in processing and is efficient in

resources use, it not only can reduce processing time

of a job which needs a lot of iterations, but also can

efficiently reduce the I/O overhead.

4.2 DIMR Working Principle
Figure 4 shows the DIMR working principle,

consisting of 6 main stages and each stage performs

different work. Master assigns those Work Nodes to

handle Map function as a Map Node or handle

Reduce function as a Reduce Node, and receive the

message from the Work Nodes regularly and assign

tasks to those nodes. The Map Node and Reduce

Node capture files, transfer files, or handle files

according to the instruction from Master, and report

progress and the information about execution

performance to Master Node.

In stage one, the Map function in Map Node will

follow the instructions of the Master to capture the

input file from file system, called Copy Phase, which

shows in Fig. 4(1). Then, Map Node will call the Map

function process tasks according to the user-written

Map function, called Map Phase, which shows in Fig.

4(2). In stage three, the Map Node will generate

intermediate data after finish the assigned task and

store those intermediate data in memory and send the

progress report to Master including data size and

number of keys, which shows in Fig. 4(3). Then,

Master instructs Map Node to transfer those

intermediate data to Reduce Node after evaluating

overall performance of system. Reduce Node

received data from the Map Node via reliable TCP

protocol, which shows in Fig. 4(4) as Merge Phase.

Reduce Node will wait for all intermediate data

collection completed and call Reduce function to

perform these intermediate data, which shows in Fig.

4(5) as Reduce Phase. Then, Reduce Node will send

this intermediate data and progress report to Master

including data size and number of keys, and

information about execution performance.

At this point, Master has collected the complete

information about execution performance in the first

iteration, and decides resource arrangement in the

next iteration after finish performance diagnosis. The

Master will notify the Reduce Node to send the

intermediate data to a specified Map Node as the

input data of Map function, if the number of

iterations does not meet the requirement. Otherwise,

the final result will be written into the file system if

the Master has completed the operation, which shows

in Fig. 4(6) as Write Phase.

Master

Map Reduce
Output

File

Input

File

Intermediate

Data
MergeCopy Write

(1) (2) (3) (4) (5) (6)

Assign

Map Task

Assign

Redcue Task

Figure 4 DIMR Working Principles

4.3 DIMR Components
Master Node controls and manages the entire

the MapReduce operation environment as well as the

allocation of resources in DIMR. As shown in Fig. 5,

DIMR is composed of five components; there are Job

Queue, Iteration Monitor, Node Manager, Task

Manager and Scheduler respectively. The five

important components cooperate with each other, and

Master assign tasks and sources dynamically, to

achieve the best utilization of computing resource

and to finish the required job efficiently.

Task

Manager

Node

Manager

Scheduler

Job

Queue

Iteration

Monitor

Split Job

Task Report

Read Node Info.

Check

Iteration

Number

Read Task Info.

Read Job Info.

Launch Node

Check

Iteration

Progress

Figure 5 DIMR Components

4.3.1 Job Queue
The Job Queue stores parameters for computing

operation and uncompleted jobs. Job Queue will

obtain the Map function and Reduce function written

by the users, including the number of nodes, the size

of blocks, the location and size of input file, and the

count of iterations. Next, Job Queue transfers the

information to scheduler including the number and

position of Map and Reduce nodes, and also transfers

the count of iterations to Iteration Monitor. Job

Queue traces the tasks’ states constantly and check

whether the setting parameters meet the requirements

as predefined.

4.3.2 Iteration Monitor
The Iteration Monitor obtains the count of

iterations, and traces the jobs' state. It will collect the

information to inform Scheduler whether the works

completed or not. Iteration Monitor gets the max

count I from Job Queue and the job's state i_now

from Task Manager. According to the Eq. (1), we can

find that whether Schedule continues to distribute

work or not, it is.

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = {
𝐹𝑖𝑛𝑎𝑙 𝑖𝑛𝑜𝑤 ≥ 𝐼

𝑁𝑒𝑥𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

4.3.3 Node Manager
Node Manager manages the resources of nodes

and traces the number of resource entities assigned to

each job. Node Manager will receive the information

of tasks' utilization and transfer it to Scheduler to

distribute the resources. At first, Node Manager will

receive the massage about how many number of Map

function and Reduce function should be opened from

Scheduler. Next, Node Manager will assign Work

Node to execute the Map function and Reduce

function according to the indication of Scheduler.

Then, Node Manager will obtain the information

about computing efficiency of each node, and report

it to Scheduler, so that Node Manager can distribute

the resources according to the command of Scheduler

to achieve the best performance.

When Node Manager assigns works to Work

Node, it must follows the rules of Eq.(2) and Eq.(3).

The total number of Map Node (N_m) , Reduce Node

(N_r) as well as Map and Reduce Node (N_k)

launched at the same time cannot be more than the

number of available Node(N_available). However, to

ensure the MapReduce keep working, the number of

Map functions and Reduce functions must be more

than two; it means that there are at least one Map

function and one Reduce function in the system.

∑ 𝑁𝑚

𝑀
𝑚=0 + ∑ 𝑁𝑟

𝑅
𝑟=0 + ∑ 𝑁𝑘

𝐾
𝑘=0 ≤ 𝑁𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 (2)

 ∑ 𝐹𝑚
𝑀
𝑚=1 + ∑ 𝐹𝑟

𝑅
𝑟=1 ≥ 2 (3)

4.3.4 Task Manager
Task Manager is in charge of managing and

tracking the status of current task, if there is any error

or delay, the Scheduler will be noticed. Task

Manager will receive the schedule of each node and

transmit the information to Scheduler after finishing

the arrangement. Scheduler notifies Task Manager to

manage input data and obtain the number of data

segments and their sizes. The size of a data segment

is defined in Eq.(2) to ensure the data segment

received by each Map are in the same size. Next,

Scheduler will assign tasks index and metadata to the

specified Node.

𝑆𝑝𝑙𝑖𝑡𝑠 𝑆𝑖𝑧𝑒 =
𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐹𝑚
 (4)

4.3.5 Scheduler
When the task/node information is published by

Task Manager and Node Manager, Scheduler will

decide a way to execute next iteration by information

that Task Manager and Node Manager provide. The

performance information that Scheduler produced at

i-th iteration includes input file size (𝑥𝑖), intermediate

data size (𝑦𝑖), Map execution time (𝑇𝑚𝑖), Reduce

execution time (𝑇𝑟𝑖), merge time (𝑇𝑔𝑖) and

transmission time (𝑇𝑠𝑖). As shown in Eq.(5), the time

required to compute input data with size xi at the i-th

iteration is defined as 𝑇𝑖(𝑥𝑖) and the summation of

time spent in each iteration for computing a job is

defined in Eq.(6). The sum of time required for

obtaining data from file system(𝑇𝑚𝑐𝑜𝑝𝑦), storing

data which is generated by Reduce to file

system(Trwrite) and processing computation in each

iteration is defined in Eq.(7), which is the total time

required for completing a Job. In order to minimize to

total execution time as Eq.(8), Scheduler plays a huge

role in assigning tasks and managing calculation

resource.
𝑇𝑖(𝑥𝑖) = 𝑇𝑚𝑖 + 𝑇𝑟𝑖 + 𝑇𝑔𝑖+ + 𝑇𝑠𝑖 (5)
∑ 𝑇𝑖(𝑥𝑖)𝐼

𝑖=0 = ∑ (𝑇𝑚𝑖 + 𝑇𝑟𝑖 + 𝑇𝑔𝑖+ + 𝑇𝑠𝑖
𝐼
𝑖=0 (6)

𝑇 = 𝑇𝑚𝑐𝑜𝑝𝑦 + 𝑇𝑟𝑤𝑟𝑖𝑡𝑒 + ∑ 𝑇𝑖(𝑥𝑖)𝐼
𝑖=0 (7)

𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛 ∑ 𝑇𝑖(𝑥𝑖)
𝐼
𝑖=0 (8)

However, Scheduler has to readjust the next

execution at every iteration to minimize the system

execution time. In order to lower the network

bandwidth consumption, Scheduler will merge the

data with lower Key value to the Node (n) with

higher Key value data in it. Moreover, the Map Node

will be transformed into a Reduce Node, which

handles the Reduce function on the same Node. With

this algorithm, the time required for transmitting

intermediate data over Internet has been reduced. As

shown in Eq.(9), the total transmission time at i-th

iteration Tsi is equal to the maximum execution time

at i-th iteration among all Nodes.

𝑇𝑠𝑖 = 𝑚𝑎𝑥 𝑇𝑠𝑖

𝑛，0 ≤ n ≤ N，0 ≤ i ≤ I (9)

Each Map Node and Reduce Node will get Key

through Scheduler, which make Map function and

Reduce function have better management of tasks

with same Key and Value by reducing the iteration

count. The problem is that the Node will be

overloaded with numerous tasks carrying the same

Key. Other Nodes will become idle until the

overloaded Node finishes its job, and this will lower

the system performance. MapReduce managing and

storing data inside system memory, in order to obtain

higher performance, however, Scheduler have to

consider the relationship between system memory

and size of task. To solve this problem, we have two

steps in our system.

Step 1, Scheduler transforms a Node with

highest number of Key to Function Node at next step,

which collects and manages Keys with the same

value. We define the Key that Reduce Node n

managed at i-th iteration as 𝛾1(𝑘𝑒𝑦𝑖
𝑛) , and

Intermediate Key produced by Map Node n at i-th

iteration as 𝑚1(𝑘𝑒𝑦𝑖
𝑛), see Eq(10). On the contraty,

𝑚1(𝑘𝑒𝑦𝑖
𝑛) is the Key that Map Node n managed at

i-th iteration, 𝛾1(𝑘𝑒𝑦𝑖
𝑛) is the Intermediate Key

produced by Reduce Node n at (i-1)th iteration, see

Eq(11). At Step 2, we use Greedy algorithm to solve

the problem of the remaining Key assigned, each

Node should be able to perform better, and thus,

improve the system performance. As shown in

Eq(12), γ2(𝑘𝑒𝑦𝑖
𝑛) is the Key assigned to Reduce

Node n at i-th iteration, which is also the amount of

unassigned intermediate data at i-th iteration, and is

limited by the maximum memory size of the Node.

On the contrary, 𝑚2(𝑘𝑒𝑦𝑖
𝑛) is the Key assigned to

Map Node n at i-th iteration, which is also the amount

of unassigned intermediate data at (i-1)th iteration,

and is limited by the maximum memory size of the

Node, see Eq.(13). After these steps, the Key of

unmanaged intermediate data received by each Node

n are γ(𝑘𝑒𝑦𝑖
𝑛) in Eq.(14) and 𝑚(𝑘𝑒𝑦𝑖

𝑛) in Eq.(15).

𝛾1(𝑘𝑒𝑦𝑖

𝑛) ⊆ 𝑚1(𝑘𝑒𝑦𝑖
𝑛) ∀ 𝑛, 𝑖 ∶ 𝑛 ≤ 𝑁, 𝑖 ≤ 𝐼 (10)

𝑚1(𝑘𝑒𝑦𝑖
𝑛) ⊆ 𝛾1(𝑘𝑒𝑦𝑖−1

𝑛) ∀ 𝑛, 𝑖 ∶ 𝑛 ≤ 𝑁, 𝑖 ≤ 𝐼 (11)
𝛾2(𝑘𝑒𝑦𝑖

𝑛) = {∑ 𝑚2(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ∖ ∑ 𝛾1(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ：
∑ 𝑆𝑖

𝑛𝐾
𝑘=1 ≤ 𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒𝑖

𝑛}

(12)
𝑚2(𝑘𝑒𝑦𝑖

𝑛) = {∑ 𝛾2(𝑘𝑒𝑦𝑖−1
𝑛)𝑁

𝑛=1 ∖ ∑ 𝑚1(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ：
∑ 𝑆𝑖

𝑛𝐾
𝑘=1 ≤ 𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒𝑖

𝑛}

(13)

𝛾(𝑘𝑒𝑦𝑖
𝑛) = 𝛾1(𝑘𝑒𝑦𝑖

𝑛) + 𝛾2(𝑘𝑒𝑦𝑖
𝑛) (14)

𝑚(𝑘𝑒𝑦𝑖
𝑛) = 𝑚1(𝑘𝑒𝑦𝑖

𝑛) + 𝑚2(𝑘𝑒𝑦𝑖
𝑛) (15)

5 Performance Analysis
5.1 Experimental Environment

In order to evaluate the performance of DIMR,

we build a large cloud cluster which is capable of

running various applications whether in industry or

academia. The cloud cluster consists of twenty-one

personal computers, including one master node, are

linked by a gigabyte switch.

The PCs we use are equipped with AMD

PhenomTM II X6 2.8 GHz CPU, 4GB DRAM, 2 TB

SATA hard disk, gigabyte NIC, 64-bit Windows7

Enterprise , Apache 2.2.15-x64-openssl-0.9.8m.msi1

and PHP 5.3.8-Win32-VC9-x64 [15]. Each of them

has the MapReduce Runtime System we developed

in it, as shown in Fig 6. Nodes connect to each other

with virtual IP and the master node has an additional

public IP for communicating with users.

We compare DIMR with other two different

MapReduce frameworks. They are traditional

MapReduce runtime, aka MR, which stores data in its

local disk, such as Hadoop and IMR, which stores

data in memory, such as Twister. To simplify the

experimental environment, we use PHP programing

language to develop the MapReduce Runtime

System. We put random-sized data in DIMR system

with four different types of algorithm. They are

K-Means, PSO(Particle swarm optimization), SA

(Simulated Annealing) and GA(Genetic algorithm).

Switch

Master
Component Specification

CPU

AMD Phenom(tm)

II X6 1055T
Processor 2.80 GHz

RAM 4 GB

HD 2 TB

NIC

NVIDIA Nforce

10/100/1000 Mbps
Ethernet

OS
Windows 7

Enterprise 64 Bit

Software

Apache 2.2.15-x64-

openssl-0.9.8m.msi

PHP 5.3.8-Win32-

VC9-x64

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

PC 8

PC 19

PC 20

‧‧‧

‧‧‧

Figure 6 Hardware specifications and network

topology of experimental environment

5.2 Previous Optimization Algorithms
K-Means clustering is a method of cluster

analysis which aims to partition n observations into k

clusters. Each Map function of K-Means will execute

complex computation, and produce unclassified

cluster intermediate data of key/value pairs. Each

Reduce function of K-Means collects intermediate

data simply according to the integer of group

classification, and finally produces the output.

PSO is an optimization method based on the

population dynamics simulation, its concept comes

from social behavior. The individual behavior will

not only be influenced by the past experience and

cognation, but also by the behavior of whole society.

According to the past experience, and each PSO has

their speed in each node, they will adjust search

strategy. It is shown that PSO can quickly identify the

optimal solution from many search results, and

provides a high degree of adaptability to optimize the

dynamic system. The Map function in PSO

application will be initialized for each node, after that

Reduce function will find the best answer through

collecting information from each node.

SA is an approximate solution which is

commonly used to solve the optimization problem,

and it is according to the principles of statistical

thermodynamics. The SA solution is a phenomenon

that during the annealing process, the analog material

will reach the low-temperature state itself, and it has

developed into an optimization solution. Due to the

simple search, and it has the ability to jump off the

local minima, so it has successfully solved many

optimization problems. Map function in SA executes

the action of mutation, and it will generate new value.

Next, transfer the value generated by last Map

function to Reduce function. Reduce function in SA

select the optimal solution, and provide the

parameters to next Map function.

GA is an algorithm that imitates the evolution of

sexual reproduction mechanism to use mechanisms

such as mating and mutation. The GA's performance

is quite excellent that has been widely used in various

areas of AI, especially in the optimization problem.

In every generation, any population will become the

best one because of the great adaption through

natural selection or mutation of the new life. GA is

one of the evolutionary algorithms and used to solve

optimization search algorithm in computational

mathematics generally. The Map function in GA

executes cross over and mutation, and transfer the

results to the Reduce function. The Reduce function

in GA selects the optimal solution, and provides the

parameters to next Map function.

5.3 Impact of Map and Reduce Number
In our experiments, the size of input data is 1GB

and the ratios of Map and Reduce, are 5 Maps to 15

Reduces, 10 Maps to 10 Reduces and 15 Maps to 5

Reduces, respectively. These ratios affect the

execution time of the selected applications under

three different types of MapReduce framework. The

system performance for the algorithms K-Means,

PSO, SA, and GA under different MapReduce

framework are evaluated in our experiments.

In Fig. 7, we can observe the performance of

K-Means used DIMR, MR, and IMR, respectively.

We found that the system will gain higher

performance when the number of Map functions is

increased. The reason is that the Map function

executes more complex works than the Reduce

function. Therefore, even we decrease the number of

Reduce functions; the system performance can still

be improved by increasing the number of Map

functions.

Figure 7 System behaviors for K-Means

K-Means in DIMR has the best performance

compared to other MapReduce runtime, because the

data stored in memory, not stored in disk, i.e., the

time required for I/O is decreased. Our dynamic

scheduler in DIMR decides the resource distribution

and utilization to make every node work efficiently.

As shown in Fig. 8(CPU usage), the CPU

average usage in DIMR is higher than other types of

MapReduce runtime. We can also know that the

whole computing time is shorter, because DIMR uses

a lot of memory space at each node in DIMR.

Memory stores the input file and the output file

completed to reduce the time of accessing data from

remote node.

K-Means in MR has poor performance because

it uses the remote file system to store the input file,

output file, and the result of calculation. We can

know that the MR does not utilize the computation

resource at each node efficiently as shown in the CPU

Usage and Memory Usage of MR in Fig. 7. Since the

data is stored in file system in MR, it will spend more

time to transfer the data to memory for computation

and makes the nodes idle for a long while. This leads

to inferior system performance.

The performance of K-Means in IMR is below

the DIMR but better than the MR, since IMR also

uses memory to store the input file and output file.

However, the system architecture does not distribute

the task by considering the state of each node, and it

still need to transfer data through the network, rather

than in the same machine. Therefore, the algorithm

will increase the network I/O, and to degrade the

performance of overall system.

Fig. 8 shows the execution time, CPU usage,

and memory usage of PSO in DIMR, MR, and IMR

respectively. In Fig. 8, we can observe that increase

the number of Map functions can reduce the time of

system execution efficiently. The reason is that the

result of PSO computation is transferred to the

memory directly at each node. The DIMR has better

performance when the number of Map functions is

over fifteen, because the DIMR can dynamically

change the working state, it means that the role of a

Work Node in DIMR can switched to be a Map Node

or a Reduce Node to process different function. Due

to PSO has specific acceleration parameters, the

more number of Map functions increased, the faster

answer of PSO converges. DIMR saves the

computation time and network resources by storing

data in memory and dynamic node assignment to

achieve the best system performance.

Figure 8 System behaviors for PSO

Figure 9 System behaviors for SA

Fig. 9 shows the SA application performance of

1 GB input file under different processing methods,

DIMR, MR, and IMR with different number of Map

functions and Reduce functions. We found that the

process time of SA application can be effectively

reduced when the number of Map functions is

increased, and CPU and memory space are highly

utilized. We also noticed that the system performance

is almost the same when the number of Map

functions is ten and fifteen, because the Reduce

function needs to refresh and find the best

temperature parameters. The Reduce function of SA

performs much work and needs more computation

resource than that of other algorithms. Therefore, the

performance is improved a little bit when the number

of Map functions is fifteen and the number of Reduce

functions is five. Compared to K-Means and PSO

applications, SA application requires a longer

operation time and more judgment conditions to

converge the best answer correctly; therefore, the

performance of SA application is slightly lower than

that of K-Means application and the PSO application.

Figure 10 System behaviors for GA

Fig. 10 shows the GA application performance

with 1 GB input file under using different processing

runtime, DIMR, MR, and IMR, in different number

of Map functions and Reduce functions. We find that

the GA program has better performance when the

number of Map functions is increasing, because the

Map function handles complex calculations and the

Reduce function handles simple analysis results.

Compare to other algorithms, the GA takes more

processing time under using different processing

methods, DIMR, MR, and IMR, because the GA

application needs to broadcast a lot of information,

and therefore consume more processing time and

network resources. The GA application transfers a

large number of messages to all Nodes for cross-over,

mutation, or other judgment methods in each

iteration and decides the generation parameters for

survivals. However, GA application can achieve

better performance using DIMR processing method

due to the dynamic task allocation and avoid storing

data in the disk method, and significantly reduce the

I/O bottleneck.

5.4 Resource Behavior for DIMR, MR and

IMR
We compare the network I/O and disk I/O

performance among the proposed method DIMR,

IMR, which stores dada in memory rather than stores

data in disk and sends data over network, and

traditional MR. In this subsection, we describe the

disk operation times and network resource under

different operator methods, DIMR, MR, and IMR, in

different algorithms, K-Means, PSO, SA, and GA.

Figure 11 Bandwidth Consumption

Fig. 11 shows the bandwidth consumption after

normalization under different operator methods,

DIMR, MR, and IMR, in different algorithms,

K-Means, PSO, SA, and GA. It can be seem from Fig.

11 that MR and IMR consume the same bandwidth in

different algorithms, because MR and IMR will send

the intermediate data and output data to the next node

to compute. The MR and IMR have no ability for the

node to switch various works, and fix the task

category for each node, called Map function or

Reduce function. Different from two other

approaches, DIMR will decide the task category

automatically, and turn the node, which keeps the

most key value, to the next Phase task category in

local area. Therefore, DIMR can reduce the

bandwidth consumption and avoid the network I/O

Bottleneck and increase performance.

6 Conclusions
With Map function and Reduce function,

MapReduce can provide a high performance and

simple operating environment. The traditional

MapReduce spend too much effort on waiting Map

and Reduce to store the information into file system,

which makes it unsuitable for applications with high

ratio data transfer. In this paper, we propose a novel

MapReduce Runtime System – DIMR. Instead of

using disk, storing data in memory not only reduce

the execution time, but also solve the bottleneck

problem caused by disk I/O. DIMR lowers the

network I/O and disk I/O ratio compared to the

traditional MapReduce runtime and greatly improve

the system performance.

Acknowledgements
This work was supported partially by the

National Science Council of Republic of China under

grant NSC 99-2221-E-032-032-MY3 and NSC

102-2221-E-032-027.

References
[1] A. Fox and R. Griffith, “Above the clouds: A

Berkeley view of cloud computing”, Dept. Electrical

Eng. and Comput. Sciences, University of California,

Berkeley, Tech. Rep. UCB/EECS, vol. 28, Feb 2009.

[2] K. Li, L. T. Yang and X. Lin, “Advanced topics in

cloud computing”, Journal of Network Computer

Applications, Vol. 34, Issue 4, July 2011, pp.

1033-1034.

[3] A. Liu, D.M. Batista and M. Alomari, “A Survey

of Large Scale Data Management Approaches in

Cloud Environments”, Journal of the IEEE

Communications Surveys & Tutorials, Vol. 13, Issue

3, 2011, pp. 311-336.

[4] J. Dean and S. Ghemawat, “MapReduce :

Simplified data processing on large clusters.”, In

Proceedings of the 6th Symposium on Operating

Systems Design and Implementation (OSDI),

December 2004, pp. 137–150.

[5] W. Dai , C. Jiao and T. He, “Research of K-means

Clustering Method Based on Parallel Genetic

Algorithm”, In Proceedings of Intelligent

Information Hiding and Multimedia Signal

Processing, Nov. 2007, pp. 158-161.

[6] A.W. McNabb, C.K. Monson, and K.D. Seppi,

“Parallel PSO using MapReduce”, In IEEE Congress

on Evolutionary Computation, Sept. 2007, pp. 7-14.

[7] G.S. Sadasivam, and D. Selvaraj, “A novel

parallel hybrid PSO-GA using MapReduce to

schedule jobs in Hadoop data grids”, In Proceedings

of Nature and Biologically Inspired Computing

(NaBIC), Dec. 2010, pp. 377-382.

 [8] J. Song, and W. Yi, “Improvement of original

particle swarm optimization algorithm based on

simulated annealing algorithm”, In Proceedings of

International Conference on Natural Computation

(ICNC), May 2012, pp.777-781.

 [9] T. White, “Hadoop: The Definitive Guide”,

ISBN: 978-0-596-52497-4, O'Reilly Media, Yahoo!

Press, June 5, 2009.

[10] D. Borthakur, “The hadoop distributed file

system: Architecture and design”, Hadoop Project

Website, 2007.

[11] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne,

S.-H. Bae, J. Qiu, and G. Fox, “Twister: a runtime for

iterative mapreduce”, In Proceedings of HPDC, 2010,

pp. 1-9.

[12] C. Jin, C. Vecchiola and R. Buyya, “MRPGA:

An Extension of MapReduce for Parallelizing

Genetic Algorithms”, In Proceedings of IEEE

International Conference on eScience, Dec. 2008, pp.

214-221.

[13] G. S. Sadasivam and D. Selvaraj, “A Novel

Parallel Hybrid PSO-GA using MapReduce to

Schedule Jobs in Hadoop Data Grids”, In

Proceedings of World Congress on Nature and

Biologically Inspired Computing, Dec. 2010, pp.

377-382.

[14] S. Ibrahim, H. Jin, L. Lu, B. He and S. Wu,

“Adaptive Disk I/O Scheduling for MapReduce in

Virtualized Environment”, In Proceedings of

International Conference on Parallel Processing

(ICPP), Sept. 2011, pp. 335-344.

[15] X. Yu and C. Yi, “Design and Implementation of

the Website Based on PHP & MYSQL”, In

proceeding of International Conference on

E-Product E-Service and E-Entertainment (ICEEE),

Nov. 2010, pp. 1-4.[16] Ssu-An Lo, Chiun-Chieh

Hsu, Shu-Ming Hsieh, Wei-Ming Chen, “RankCloud:

A Cloud-Based Webometrics Ranking System”,

Journal of Internet Technology, Vol. 14 No. 1, P.

[17] Seokil Song, Ki-jeong Khil, Yun Sik Kwak,

Daesik Ko, Seung-Kook Cheong, “ Software RAID

for Data Intensive Applications in Cloud

Computing”, Journal of Internet Technology,Vol. 14

No. 3, P.529-534.

[18] Tin-Yu Wu, Chi-Yuan Chen, Ling-Shang Kuo,

Wei-Tsong Lee, and Han-Chieh Chao, "Cloud-based

Image Processing System with Priority-based Data

Distribution Mechanism", Computer

Communications, Vol. 35, No. 15, pp. 1809-1818,

September 2012.

[19] Shen Wang, Xiamu Niu, “Cover the Trace of

Image Forgery by PSO”, Journal of Internet

Technology, Vol. 14 No. 1, P.161-168

[20] Yanfeng Zhang, Xiaofei Xu, Yingqun Liu,

Xutao Li Yunming Ye1, “A Novel Decision Cluster

Classifier with Nested Agglomerative K-Means”,

Journal of Internet Technology, Vol. 14 No. 1,

P.145-152

Wei-Tsong Lee received his B.S., M.S.

and Ph.D degrees in Electrical

Engineering from National Cheng Kung

University, Tainan, Taiwan. In 2003, he

joined the department members of

Electrical Engineering of Tamkang

University and he is currently the

chairman of the Department. His

research interests are computer

architecture, micro-processor interface

and computer networks.

Ming-Zhi Wu received the B.S and

M.S degree in electrical engineering

from Tamkang University. His research

interests include cloud computing, .

Hsin-Wen Wei received the Ph.D.

degree in computer science from

National Tsing Hua University. She is

an assistant professor in the Department

of Electrical Engineering at Tamkang

University. Her research interests

include cloud computing, wireless

networks, real-time systems, and graph

theory.

Fang-Yi Yu received the B.S and M.S

degree in electrical engineering from

Tamkang University. His research

interests include image processing,

multimedia streaming, cloud

computing.

Yu-Sun Lin received the B.S and M.S

degree in electrical engineering from

National Chung Hsing University. His

research interests include image

processing, multimedia streaming,

cloud computing.

