
Dynamically Iterative MapReduce 
 

Wei-Tsong Lee, Ming-Zhi Wu, Hsin-Wen Wei*, Fang-Yi Yu , Yu-Sun Lin 

Department of Electrical Engineering, TamKang University, Taiwan 

Chung-Shan Institute of Science and Technology, Taiwan, R.O.C 

hwwei@mail.tku.edu.tw 

 

Abstract 
MapReduce is a distributed and parallel 

computing model for data-intensive tasks with 

features of optimized scheduling, flexibility, high 

availability, and high manageability. MapReduce 

can work on various platforms; however, 

MapReduce is not suitable for iterative programs 

because the performance may be lowered by frequent 

disk I/O operations. In order to improve system 

performance and resource utilization, we propose a 

novel MapReduce framework named Dynamically 

Iterative MapReduce (DIMR) to reduce numbers of 

disk I/O operations and the consumption of network 

bandwidth by means of using dynamic task allocation 

and memory management mechanism. We show that 

DIMR is promising with detail discussions in this 

paper. 
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1   Introduction 
Information technology industry has been 

changed by cloud computing technology [1]. 

Programmers can just focus on developing software 

to improve service quality and application 

performance instead of upgrading their hardware. By 

renting computing resources from cloud service 

providers [2], IT industry does not need to purchase 

or construct infrastructure. Cloud computing 

technology also reduces manpower and the cost of 

upgrading software and hardware. Cloud computing 

includes various services stored in remote 

environments [3], and all users only have to know is 

to choose the service and use it via networks. To 

fulfill the requirements of users, cloud computing 

techniques are needed to carry out a large number of 

computations with highly parallel and distributed 

processing.  

MapReduce [4] framework is one of 

well-known cloud computing techniques that can 

help the user to complete the task efficiently, 

especially in dealing with a large number of batch 

files. The hardware of nodes used in MapReduce 

computation does not need to be as good as 

high-performance computing computer, but just 

low-cost, low-performance computers like what we 

use in daily life. MapReduce runtime system 

automatically divide input file into the number of 

copies, and automatically deal these data with 

scheduling, load balancing, fault tolerance, and 

managing, and so on. MapReduce allows the user to 

finish their job in parallel without any knowledge of 

the distribution of their work. Users only need to 

write Map and Reduce function, and MapReduce 

Execution System function, and then the job will be 

completed according to the function written by the 

users.   

Many optimization solvers, such as K-Means 

[5][20], Particle Swarm Optimization (PSO) [6][19], 

Genetic Algorithm (GA) [7], Simulated Annealing 

(SA) [8], and image processing application [18], need 

to process large amounts of information, and 

numerous iterations as well as high-density 

computing. In addition, many analysis and statistical 

results of the Web content [16], the commercial 

transaction information, and Bioinformatic data are 

needed for various applications, which require a lot 

of time for processing large amounts of data. 

However, single operational unit does not have the 

ability to satisfy the requirement for processing large 

amounts of data. Therefore, MapReduce will be the 

solution for the applications that need large amount 

of data computation. Using MapReduce can decrease 

the overall processing time, increase the efficiency, 

reliability, and enhance integrity by fault tolerance 

mechanism. 

While using MapReduce can solve the problem 

of a single computing unit, but the traditional 

computing architecture of MapReduce will make the 

performance of some applications like optimization 

algorithms degrade. Since optimization algorithms 

need to go through numerous iterations and require 

high-density computing to find the final answer, the 

large amount of data migration and pass overhead 

will decline system performance. In addition, the 

design of traditional MapReduce aims to handle large 

and parallelable tasks, not designed for handling 

tasks with multiple iterations of data. Hence, to 

improve the performance of using MapReduce to 

handle a program with iterative structure will be an 

urgent problem that needs to be solved. However, the 

computing nodes in the MapReduce operational 

environment do not have the same computing 

capability, i.e., CPU computing power, storage space, 
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and network bandwidth, are not same on every node. 

Using a heterogeneous environment increases the 

difficulty of the assignment and affects the overall 

operational efficiency and reliability. Therefore, this 

paper proposes a new type of MapReduce 

architecture called Dynamically Iterative 

MapReduce (DIMR), and it aims to reduce the 

overhead of passing data between large numbers of 

iterations and to increase the performance of 

applications on the MapReduce runtime system using 

the heterogeneous environment. 

The remainder of this paper is organized as 

follows. We first give an overview of the well-known 

MapReduce runtimes in Section2. Previous works 

are presented and discussed in Section 3. Section 4 

presents the DIMR architecture and workflow. The 

experimental results are shown in Section 5 and the 

paper is concluded in Section 6. 

 

2   Background  
2.1 Hadoop MapReduce 

The MapReduce architecture in Hadoop [9] is 

shown in Fig. 1. MapReduce is composed by the one 

Master as well as a number of Map blocks and 

Reduce blocks. MapReduce works through the 

several stages of operation to complete the data 

processing. First, Master Node will receive the 

command of the user to start a MapReduce program 

and have knowledge of the position and the size of 

the input file in HDFS [10]. Then, Master Node will 

assign the idle Worker Node to execute Map function 

or Reduce function. Master Node will distribute input 

file evenly according to the number of Map functions, 

and the file blocks assigned to Map function are 

called split. Therefore, the number of splits generated 

by Master Node is equal to the number of Map 

functions. Note, Master Node does not transfer the 

input file directly to the Map Node, but inform Map 

Node about the location and the size of needed file. If 

Master Node has distributed tasks to all available 

Worker Node, then Master Node constantly monitor 

the states of all Map function for finding the idle 

Worker Node. Master Node will continuously assign 

the task to idle Worker Node or a Worker Node that 

finish its work until all tasks are completed. The Map 

function in Map Node will receive the location and 

size of split from Master Node and issue the 

requirement over HTTP to ask for data in HDFS. 

Map function is initiative to retrieve data from HDFS; 

nevertheless, each Map function in this step is carried 

out simultaneously and in accordance with 

user-defined way to deal with these data. 

The Reduce function in Reduce Node will 

receive the message sent by Master Node. The 

Reduce function will know the location and size of 

the intermediate data by the message, and issue the 

requirement over HTTP to ask for the intermediate 

data which is assigned by Map Node. The time 

required for Reduce function to receive the message 

from Master Node determined by the processing 

speed of Map Node, so Reduce function is 

non-synchronized receiving and processing 

intermediate data. Next step, Reduce function will 

simplify these data according to the user definition. 

In the end, Reduce function will finish the 

computation, and produce an output file and store it 

into HDFS. Then, Worker Node will notify the 

Master Node that task is completed and waiting for 

the next task. When MapReduce components 

complete all the tasks, it means the job has finished, 

and then they will continue to the next work. 
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 Figure 1 Hadoop MapReduce Architecture 

 

2.2 Twister 
Twister [11], which is a MapReduce runtime, 

aims to solve the overhead caused by hierarchical 

MapReduce applications, since hierarchical 

MapReduce must constantly and repeatedly to create 

a new Map function and Reduce function. The 

architecture of Twister as shown in Fig. 2 makes it 

has better performance than other MapReduce 

framework in dealing with repeated (iterative) 

calculation. When Twister receives the computing 

request from users, it will distribute all tasks and 

execute Map function and Reduce function. In the 

next step, Twister Worker Node will start to execute 

the tasks. Map function in the Twister will read the 

local disks or remote disks to find data which is 

needed to be computed. After Twister receives the 

data, the Map function starts the computation and 

produce intermediate data as an output file. 

Intermediate data in Twister is distributed to memory 

of each Worker Node. When the Map function in 

Twister finishes the job, intermediate data will be 

directly transferred to appropriate Reduce function. 
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Figure 2 Twister MapReduce Architecture [11] 

 

The Reduce function in Twister will store 

intermediate data in the memory cache until Reduce 

function execution is completed. Note that, these 

intermediate data can also be stored in the local disk. 

After the Reduce function in Twister completes the 

task, and then the output file will be sent to the 

Combiner. The main job of Combiner in the Twister 

is to combine the result generated by Reduce function, 

and produce a new output file to the Map function. 

When the Combiner in Twister finishes the 

combination of the output files that Reduce functions 

completed, it will transfer the result to next Map 

function to start next MapReduce iteration. 

Twister is different from other MapReduce 

framework, it uses a publish/subscribe messaging 

architecture for communication and data 

transmission. In addition, the intermediate data 

generated by Map function in Twister will be 

transferred directly to the Reduce function and the 

output file generated by Reduce function in Twister 

will be directly transferred to the Combiner. 

Therefore, Twister architecture effectively reduces 

overhead of storing data into storage and passing 

control messages. In other words, Twister saves the 

time spent on I/O. 

 

3   Related Work  
To increase the performance of handling 

optimization problems, there are many optimization 

algorithms implemented in parallel way and 

computed in distributed environment. There are some 

important MapReduce systems and methods address 

the data migration issues in optimization problems 

and network I/O bottleneck [17]. Although these 

methods are faster than that using single-node 

operation, they are not efficient solutions in using the 

whole system resources. In [6], the authors proposed 

MRPSO to find the best answer of PSO problem by 

writing a simple Map/Reduce function and utilize the 

Map function to find the local optimum and then call 

the Reduce function to find the global optimum. The 

operating environment used in [6] is Hadoop 

basically, so the data completed by Reduce function 

is written to HDFS. Then, the Map function will read 

the previous generated file from HDFS and do the 

same job as above. It takes a lot of time for Map 

function and Reduce function to access data from 

HDFS, and therefore degrades the system 

performance. 

A MapReduce operation method called 

MRPGA is proposed in [12], which aims to complete 

the calculation of the GA by parallel and distributed 

computing. The MRPGA finds the best answer by 

two-phase Reduce. In [12], the Reduce function of 

the second phase must withstand a lot of input 

pressure, and it will inevitably result in inferior 

system performance. Moreover, its operating 

environment is like Hadoop, so the output files must 

be stored via HDFS, and the Map function must 

access the input files from HDFS. This will cause 

system I/O busy, and also decrease the performance. 

The proposed method in [13] combined two 

optimization algorithms PSO and GA to find the best 

answer quickly and accurately. The solution in [13] 

utilizes the Map function to execute PSO part and the 

Reduce function to execute GA mutation and 

cross-over. Although the solution in [13] makes the 

computing speed up, but Hadoop is not suitable 

iterative program originally, so data is not properly 

utilized. 

An algorithm called Adaptive Disk I/O 

Scheduling for MapReduce is proposed in [14], 

which adjust I/O computing process to improve the 

overall performance and reduce the I/O bottleneck. In 

[14], the authors present the Task Scheduler 

architecture, which optimizes various MapReduce 

applications and manage the I/O process, as well as 

the resources required for Map functions and Reduce 

functions. The experimental results show that the 

performance is improved more than 25%. 

Nevertheless, the architecture is not suitable for 

applications with large numbers of iterations, which 

will lead to performance degradation. 

Though, above solutions address the problems 

caused by iterative programs, they does not utilize the 

resource at each node effectively in fact. Therefore, 

we proposed a novel MapReduce runtime, called 

Dynamically Iterative MapReduce (DIMR), to solve 



the overhead caused by multiple applications with 

iterative structures. 

 

4   Dynamically Iterative MapReduce 
4.1 DIMR Overview 

This paper presents a MapReduce framework 

that can dynamically determine the location of 

output data to reduce most of execution time of 

iterative programs, is called Dynamically Iterative 

MapReduce (DIMR). DIMR can reduce the 

bottlenecks of I/O operations in iterative 

MapReduce applications which require a large 

amount of iterative I/O operations, such as the 

optimization algorithm, recursive, heuristic, and so 

on. DIMR is shown as Fig. 3, which is composed of 

a Master Node and a resource pool of multiple Work 

Nodes, and file system. The main controller of 

DIMR is in the Master Node, which manages the 

resources, tasks distribution, error recovery, and the 

most important is to collect the usage of each node 

for performance evaluation. The Master of DIMR 

will follow the settings to allot tasks to Work Nodes 

to execute Map function and Reduce function. 

Master will instruct Work Node to execute first 

iteration, and collect the information of system 

performance; finally to allot resources and tasks by 

the performance diagnosis. The performance of 

system is evaluated in each iteration and then 

Master will decide the operation in next iteration 

according to the tasks efficiency.  
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Figure 3 DIMR Overview 

 

Different from the conventional MapReduce, in 

DIMR, Work Node acquires unprocessed data from 

file system and places the results into the Memory, 

after it finish the computation, it will then transfer 

the result directly to the next Work Node. This way 

can effectively reduce the time of writing data into 

the local disk and read data from the remote disk. 

Therefore, DIMR can achieve a better performance 

by reducing the overhead of network I/O through 

controlling the assignment of Map function and 

Reduce function. Overall, DIMR has excellent 

performance in processing and is efficient in 

resources use, it not only can reduce processing time 

of a job which needs a lot of iterations, but also can 

efficiently reduce the I/O overhead. 

 

4.2 DIMR Working Principle  
Figure 4 shows the DIMR working principle, 

consisting of 6 main stages and each stage performs 

different work. Master assigns those Work Nodes to 

handle Map function as a Map Node or handle 

Reduce function as a Reduce Node, and receive the 

message from the Work Nodes regularly and assign 

tasks to those nodes. The Map Node and Reduce 

Node capture files, transfer files, or handle files 

according to the instruction from Master, and report 

progress and the information about execution 

performance to Master Node. 

In stage one, the Map function in Map Node will 

follow the instructions of the Master to capture the 

input file from file system, called Copy Phase, which 

shows in Fig. 4(1). Then, Map Node will call the Map 

function process tasks according to the user-written 

Map function, called Map Phase, which shows in Fig. 

4(2). In stage three, the Map Node will generate 

intermediate data after finish the assigned task and 

store those intermediate data in memory and send the 

progress report to Master including data size and 

number of keys, which shows in Fig. 4(3). Then, 

Master instructs Map Node to transfer those 

intermediate data to Reduce Node after evaluating 

overall performance of system. Reduce Node 

received data from the Map Node via reliable TCP 

protocol, which shows in Fig. 4(4) as Merge Phase. 

Reduce Node will wait for all intermediate data 

collection completed and call Reduce function to 

perform these intermediate data, which shows in Fig. 

4(5) as Reduce Phase. Then, Reduce Node will send 

this intermediate data and progress report to Master 

including data size and number of keys, and 

information about execution performance. 

At this point, Master has collected the complete 

information about execution performance in the first 

iteration, and decides resource arrangement in the 

next iteration after finish performance diagnosis. The 

Master will notify the Reduce Node to send the 

intermediate data to a specified Map Node as the 

input data of Map function, if the number of 

iterations does not meet the requirement. Otherwise, 

the final result will be written into the file system if 

the Master has completed the operation, which shows 

in Fig. 4(6) as Write Phase. 



Master

Map Reduce
Output 

File 

Input 

File 

Intermediate 

Data
MergeCopy Write

(1) (2) (3) (4) (5) (6)

Assign 

Map Task

Assign 

Redcue Task

Figure 4 DIMR Working Principles 

 

4.3 DIMR Components 
Master Node controls and manages the entire 

the MapReduce operation environment as well as the 

allocation of resources in DIMR. As shown in Fig. 5, 

DIMR is composed of five components; there are Job 

Queue, Iteration Monitor, Node Manager, Task 

Manager and Scheduler respectively. The five 

important components cooperate with each other, and 

Master assign tasks and sources dynamically, to 

achieve the best utilization of computing resource 

and to finish the required job efficiently. 
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4.3.1 Job Queue 
The Job Queue stores parameters for computing 

operation and uncompleted jobs. Job Queue will 

obtain the Map function and Reduce function written 

by the users, including the number of nodes, the size 

of blocks, the location and size of input file, and the 

count of iterations. Next, Job Queue transfers the 

information to scheduler including the number and 

position of Map and Reduce nodes, and also transfers 

the count of iterations to Iteration Monitor. Job 

Queue traces the tasks’ states constantly and check 

whether the setting parameters meet the requirements 

as predefined. 

4.3.2 Iteration Monitor 
The Iteration Monitor obtains the count of 

iterations, and traces the jobs' state. It will collect the 

information to inform Scheduler whether the works 

completed or not. Iteration Monitor gets the max 

count I from Job Queue and the job's state i_now 

from Task Manager. According to the Eq. (1), we can 

find that whether Schedule continues to distribute 

work or not, it is. 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = {
𝐹𝑖𝑛𝑎𝑙  𝑖𝑛𝑜𝑤 ≥ 𝐼

𝑁𝑒𝑥𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (1) 

 

4.3.3 Node Manager 
Node Manager manages the resources of nodes 

and traces the number of resource entities assigned to 

each job. Node Manager will receive the information 

of tasks' utilization and transfer it to Scheduler to 

distribute the resources. At first, Node Manager will 

receive the massage about how many number of Map 

function and Reduce function should be opened from 

Scheduler. Next, Node Manager will assign Work 

Node to execute the Map function and Reduce 

function according to the indication of Scheduler. 

Then, Node Manager will obtain the information 

about computing efficiency of each node, and report 

it to Scheduler, so that Node Manager can distribute 

the resources according to the command of Scheduler 

to achieve the best performance. 

When Node Manager assigns works to Work 

Node, it must follows the rules of Eq.(2) and Eq.(3). 

The total number of Map Node (N_m) , Reduce Node 

(N_r) as well as Map and Reduce Node (N_k) 

launched at the same time cannot be more than the 

number of available Node(N_available). However, to 

ensure the MapReduce keep working, the number of 

Map functions and Reduce functions must be more 

than two; it means that there are at least one Map 

function and one Reduce function in the system. 

 
∑ 𝑁𝑚

𝑀
𝑚=0 + ∑ 𝑁𝑟

𝑅
𝑟=0 + ∑ 𝑁𝑘

𝐾
𝑘=0 ≤ 𝑁𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒         (2) 

 ∑ 𝐹𝑚
𝑀
𝑚=1 + ∑ 𝐹𝑟

𝑅
𝑟=1 ≥ 2                                               (3) 

 

4.3.4 Task Manager 
Task Manager is in charge of managing and 

tracking the status of current task, if there is any error 

or delay, the Scheduler will be noticed. Task 

Manager will receive the schedule of each node and 

transmit the information to Scheduler after finishing 

the arrangement. Scheduler notifies Task Manager to 

manage input data and obtain the number of data 

segments and their sizes. The size of a data segment 

is defined in Eq.(2) to ensure the data segment 

received by each Map are in the same size. Next, 

Scheduler will assign tasks index and metadata to the 

specified Node. 

 

𝑆𝑝𝑙𝑖𝑡𝑠 𝑆𝑖𝑧𝑒 =  
𝐼𝑛𝑝𝑢𝑡 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝐹𝑚
                                     (4) 

 

4.3.5 Scheduler 
When the task/node information is published by 

Task Manager and Node Manager, Scheduler will 

decide a way to execute next iteration by information 

that Task Manager and Node Manager provide. The 



performance information that Scheduler produced at 

i-th iteration includes input file size (𝑥𝑖), intermediate 

data size (𝑦𝑖), Map execution time (𝑇𝑚𝑖), Reduce 

execution time ( 𝑇𝑟𝑖 ), merge time ( 𝑇𝑔𝑖 ) and 

transmission time (𝑇𝑠𝑖). As shown in Eq.(5), the time 

required to compute input data with size xi at the i-th 

iteration is defined as 𝑇𝑖(𝑥𝑖) and the summation of 

time spent in each iteration for computing a job is 

defined in Eq.(6). The sum of time required for 

obtaining data from file system( 𝑇𝑚𝑐𝑜𝑝𝑦 ), storing 

data which is generated by Reduce to file 

system(Trwrite) and processing computation in each 

iteration is defined in Eq.(7), which is the total time 

required for completing a Job. In order to minimize to 

total execution time as Eq.(8), Scheduler plays a huge 

role in assigning tasks and managing calculation 

resource. 
𝑇𝑖(𝑥𝑖) = 𝑇𝑚𝑖 + 𝑇𝑟𝑖 + 𝑇𝑔𝑖+ + 𝑇𝑠𝑖                           (5) 
∑ 𝑇𝑖(𝑥𝑖)𝐼

𝑖=0 = ∑ (𝑇𝑚𝑖 + 𝑇𝑟𝑖 + 𝑇𝑔𝑖+ + 𝑇𝑠𝑖
𝐼
𝑖=0          (6) 

𝑇 = 𝑇𝑚𝑐𝑜𝑝𝑦 + 𝑇𝑟𝑤𝑟𝑖𝑡𝑒 + ∑ 𝑇𝑖(𝑥𝑖)𝐼
𝑖=0                      (7) 

𝑇𝑚𝑖𝑛 = 𝑚𝑖𝑛 ∑ 𝑇𝑖(𝑥𝑖)
𝐼
𝑖=0                                          (8) 

 

However, Scheduler has to readjust the next 

execution at every iteration to minimize the system 

execution time. In order to lower the network 

bandwidth consumption, Scheduler will merge the 

data with lower Key value to the Node (n) with 

higher Key value data in it. Moreover, the Map Node 

will be transformed into a Reduce Node, which 

handles the Reduce function on the same Node. With 

this algorithm, the time required for transmitting 

intermediate data over Internet has been reduced. As 

shown in Eq.(9), the total transmission time at i-th 

iteration Tsi is equal to the maximum execution time 

at i-th iteration  among all Nodes. 

 
𝑇𝑠𝑖 = 𝑚𝑎𝑥 𝑇𝑠𝑖

𝑛，0 ≤ n ≤ N，0 ≤ i ≤ I              (9) 

 

Each Map Node and Reduce Node will get Key 

through Scheduler, which make Map function and 

Reduce function have better management of tasks 

with same Key and Value by reducing the iteration 

count. The problem is that the Node will be 

overloaded with numerous tasks carrying the same 

Key. Other Nodes will become idle until the 

overloaded Node finishes its job, and this will lower 

the system performance. MapReduce managing and 

storing data inside system memory, in order to obtain 

higher performance, however, Scheduler have to 

consider the relationship between system memory 

and size of task. To solve this problem, we have two 

steps in our system. 

Step 1, Scheduler transforms a Node with 

highest number of Key to Function Node at next step, 

which collects and manages Keys with the same 

value. We define the Key that Reduce Node n 

managed at i-th iteration as 𝛾1(𝑘𝑒𝑦𝑖
𝑛) , and 

Intermediate Key produced by Map Node n at i-th 

iteration as 𝑚1(𝑘𝑒𝑦𝑖
𝑛), see Eq(10). On the contraty, 

𝑚1(𝑘𝑒𝑦𝑖
𝑛) is the Key that Map Node n managed at 

i-th iteration, 𝛾1(𝑘𝑒𝑦𝑖
𝑛)  is the Intermediate Key 

produced by Reduce Node n at (i-1)th iteration, see 

Eq(11). At Step 2, we use Greedy algorithm to solve 

the problem of the remaining Key assigned, each 

Node should be able to perform better, and thus, 

improve the system performance. As shown in 

Eq(12), γ2(𝑘𝑒𝑦𝑖
𝑛)  is the Key assigned to Reduce 

Node n at i-th iteration, which is also the amount of 

unassigned intermediate data at i-th iteration, and is 

limited by the maximum memory size of the Node. 

On the contrary, 𝑚2(𝑘𝑒𝑦𝑖
𝑛) is the Key assigned to 

Map Node n at i-th iteration, which is also the amount 

of unassigned intermediate data at (i-1)th iteration, 

and is limited by the maximum memory size of the 

Node, see Eq.(13). After these steps, the Key of 

unmanaged intermediate data received by each Node 

n are γ(𝑘𝑒𝑦𝑖
𝑛) in Eq.(14) and 𝑚(𝑘𝑒𝑦𝑖

𝑛) in Eq.(15). 

 
𝛾1(𝑘𝑒𝑦𝑖

𝑛) ⊆ 𝑚1(𝑘𝑒𝑦𝑖
𝑛) ∀ 𝑛, 𝑖 ∶ 𝑛 ≤ 𝑁, 𝑖 ≤ 𝐼                (10) 

𝑚1(𝑘𝑒𝑦𝑖
𝑛) ⊆ 𝛾1(𝑘𝑒𝑦𝑖−1

𝑛 ) ∀ 𝑛, 𝑖 ∶ 𝑛 ≤ 𝑁, 𝑖 ≤ 𝐼              (11) 
𝛾2(𝑘𝑒𝑦𝑖

𝑛) = {∑ 𝑚2(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ∖ ∑ 𝛾1(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ：
∑ 𝑆𝑖

𝑛𝐾
𝑘=1 ≤ 𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒𝑖

𝑛}                                                             

(12) 
𝑚2(𝑘𝑒𝑦𝑖

𝑛) = {∑ 𝛾2(𝑘𝑒𝑦𝑖−1
𝑛 )𝑁

𝑛=1 ∖ ∑ 𝑚1(𝑘𝑒𝑦𝑖
𝑛)𝑁

𝑛=1 ：
∑ 𝑆𝑖

𝑛𝐾
𝑘=1 ≤ 𝑀𝑒𝑚𝑜𝑟𝑦𝑆𝑖𝑧𝑒𝑖

𝑛}                                                             

(13) 

𝛾(𝑘𝑒𝑦𝑖
𝑛) =  𝛾1(𝑘𝑒𝑦𝑖

𝑛) + 𝛾2(𝑘𝑒𝑦𝑖
𝑛)                              (14) 

𝑚(𝑘𝑒𝑦𝑖
𝑛) =  𝑚1(𝑘𝑒𝑦𝑖

𝑛) + 𝑚2(𝑘𝑒𝑦𝑖
𝑛)                          (15) 

 

5   Performance Analysis  
5.1 Experimental Environment 

In order to evaluate the performance of DIMR, 

we build a large cloud cluster which is capable of 

running various applications whether in industry or 

academia. The cloud cluster consists of twenty-one 

personal computers, including one master node, are 

linked by a gigabyte switch.  

The PCs we use are equipped with AMD 

PhenomTM II X6 2.8 GHz CPU, 4GB DRAM, 2 TB 

SATA hard disk, gigabyte NIC, 64-bit Windows7 

Enterprise , Apache 2.2.15-x64-openssl-0.9.8m.msi1 

and PHP 5.3.8-Win32-VC9-x64 [15]. Each of them 

has the MapReduce Runtime System we developed 

in it, as shown in Fig 6. Nodes connect to each other 

with virtual IP and the master node has an additional 

public IP for communicating with users. 

We compare DIMR with other two different 

MapReduce frameworks. They are traditional 

MapReduce runtime, aka MR, which stores data in its 



local disk, such as Hadoop and IMR, which stores 

data in memory, such as Twister. To simplify the 

experimental environment, we use PHP programing 

language to develop the MapReduce Runtime 

System. We put random-sized data in DIMR system 

with four different types of algorithm. They are 

K-Means, PSO(Particle swarm optimization), SA 

(Simulated Annealing) and GA(Genetic algorithm). 

 

Switch

Master
Component Specification

CPU

AMD Phenom(tm) 

II X6 1055T 
Processor 2.80 GHz

RAM 4 GB

HD 2 TB

NIC

NVIDIA Nforce

10/100/1000 Mbps 
Ethernet

OS
Windows 7 

Enterprise 64 Bit

Software

Apache 2.2.15-x64-

openssl-0.9.8m.msi

PHP 5.3.8-Win32-

VC9-x64

PC 1

PC 2

PC 3

PC 4

PC 5

PC 6

PC 7

PC 8

PC 19

PC 20

‧‧‧

‧‧‧

Figure 6 Hardware specifications and network 

topology of experimental environment 

 

 

5.2 Previous Optimization Algorithms  
K-Means clustering is a method of cluster 

analysis which aims to partition n observations into k 

clusters. Each Map function of K-Means will execute 

complex computation, and produce unclassified 

cluster intermediate data of key/value pairs. Each 

Reduce function of K-Means collects intermediate 

data simply according to the integer of group 

classification, and finally produces the output. 

PSO is an optimization method based on the 

population dynamics simulation, its concept comes 

from social behavior. The individual behavior will 

not only be influenced by the past experience and 

cognation, but also by the behavior of whole society. 

According to the past experience, and each PSO has 

their speed in each node, they will adjust search 

strategy. It is shown that PSO can quickly identify the 

optimal solution from many search results, and 

provides a high degree of adaptability to optimize the 

dynamic system. The Map function in PSO 

application will be initialized for each node, after that 

Reduce function will find the best answer through 

collecting information from each node. 

SA is an approximate solution which is 

commonly used to solve the optimization problem, 

and it is according to the principles of statistical 

thermodynamics. The SA solution is a phenomenon 

that during the annealing process, the analog material 

will reach the low-temperature state itself, and it has 

developed into an optimization solution. Due to the 

simple search, and it has the ability to jump off the 

local minima, so it has successfully solved many 

optimization problems. Map function in SA executes 

the action of mutation, and it will generate new value. 

Next, transfer the value generated by last Map 

function to Reduce function. Reduce function in SA 

select the optimal solution, and provide the 

parameters to next Map function. 

GA is an algorithm that imitates the evolution of 

sexual reproduction mechanism to use mechanisms 

such as mating and mutation. The GA's performance 

is quite excellent that has been widely used in various 

areas of AI, especially in the optimization problem. 

In every generation, any population will become the 

best one because of the great adaption through 

natural selection or mutation of the new life. GA is 

one of the evolutionary algorithms and used to solve 

optimization search algorithm in computational 

mathematics generally. The Map function in GA 

executes cross over and mutation, and transfer the 

results to the Reduce function. The Reduce function 

in GA selects the optimal solution, and provides the 

parameters to next Map function. 

 

5.3 Impact of Map and Reduce Number 
In our experiments, the size of input data is 1GB 

and the ratios of Map and Reduce, are 5 Maps to 15 

Reduces, 10 Maps to 10 Reduces and 15 Maps to 5 

Reduces, respectively. These ratios affect the 

execution time of the selected applications under 

three different types of MapReduce framework. The 

system performance for the algorithms K-Means, 

PSO, SA, and GA under different MapReduce 

framework are evaluated in our experiments. 

In Fig. 7, we can observe the performance of 

K-Means used DIMR, MR, and IMR, respectively. 

We found that the system will gain higher 

performance when the number of Map functions is 

increased. The reason is that the Map function 

executes more complex works than the Reduce 

function. Therefore, even we decrease the number of 

Reduce functions; the system performance can still 

be improved by increasing the number of Map 

functions.  

 
Figure 7 System behaviors for K-Means 



 

K-Means in DIMR has the best performance 

compared to other MapReduce runtime, because the 

data stored in memory, not stored in disk, i.e., the 

time required for I/O is decreased. Our dynamic 

scheduler in DIMR decides the resource distribution 

and utilization to make every node work efficiently.  

As shown in Fig. 8(CPU usage), the CPU 

average usage in DIMR is higher than other types of 

MapReduce runtime. We can also know that the 

whole computing time is shorter, because DIMR uses 

a lot of memory space at each node in DIMR. 

Memory stores the input file and the output file 

completed to reduce the time of accessing data from 

remote node. 

K-Means in MR has poor performance because 

it uses the remote file system to store the input file, 

output file, and the result of calculation. We can 

know that the MR does not utilize the computation 

resource at each node efficiently as shown in the CPU 

Usage and Memory Usage of MR in Fig. 7.  Since the 

data is stored in file system in MR, it will spend more 

time to transfer the data to memory for computation 

and makes the nodes idle for a long while. This leads 

to inferior system performance. 

The performance of K-Means in IMR is below 

the DIMR but better than the MR, since IMR also 

uses memory to store the input file and output file. 

However, the system architecture does not distribute 

the task by considering the state of each node, and it 

still need to transfer data through the network, rather 

than in the same machine. Therefore, the algorithm 

will increase the network I/O, and to degrade the 

performance of overall system. 

Fig. 8 shows the execution time, CPU usage, 

and memory usage of PSO in DIMR, MR, and IMR 

respectively. In Fig. 8, we can observe that increase 

the number of Map functions can reduce the time of 

system execution efficiently. The reason is that the 

result of PSO computation is transferred to the 

memory directly at each node. The DIMR has better 

performance when the number of Map functions is 

over fifteen, because the DIMR can dynamically 

change the working state, it means that the role of a 

Work Node in DIMR can switched to be a Map Node 

or a Reduce Node to process different function. Due 

to PSO has specific acceleration parameters, the 

more number of Map functions increased, the faster 

answer of PSO converges. DIMR saves the 

computation time and network resources by storing 

data in memory and dynamic node assignment to 

achieve the best system performance. 

 
Figure 8 System behaviors for PSO 

 

 
Figure 9 System behaviors for SA 

 

Fig. 9 shows the SA application performance of 

1 GB input file under different processing methods, 

DIMR, MR, and IMR with different number of Map 

functions and Reduce functions. We found that the 

process time of SA application can be effectively 

reduced when the number of Map functions is 

increased, and CPU and memory space are highly 

utilized. We also noticed that the system performance 

is almost the same when the number of Map 

functions is ten and fifteen, because the Reduce 

function needs to refresh and find the best 

temperature parameters. The Reduce function of SA 

performs much work and needs more computation 

resource than that of other algorithms. Therefore, the 

performance is improved a little bit when the number 

of Map functions is fifteen and the number of Reduce 

functions is five. Compared to K-Means and PSO 

applications, SA application requires a longer 

operation time and more judgment conditions to 

converge the best answer correctly; therefore, the 

performance of SA application is slightly lower than 

that of K-Means application and the PSO application. 

 

 
Figure 10 System behaviors for GA  

 



Fig. 10 shows the GA application performance 

with 1 GB input file under using different processing 

runtime, DIMR, MR, and IMR, in different number 

of Map functions and Reduce functions. We find that 

the GA program has better performance when the 

number of Map functions is increasing, because the 

Map function handles complex calculations and the 

Reduce function handles simple analysis results. 

Compare to other  algorithms, the GA takes more 

processing time under using different processing 

methods, DIMR, MR, and IMR, because the GA 

application needs to broadcast a lot of information, 

and therefore consume more processing time and 

network resources. The GA application transfers a 

large number of messages to all Nodes for cross-over, 

mutation, or other judgment methods in each 

iteration and decides the generation parameters for 

survivals. However, GA application can achieve 

better performance using DIMR processing method 

due to the dynamic task allocation and avoid storing 

data in the disk method, and significantly reduce the 

I/O bottleneck. 

5.4 Resource Behavior for DIMR, MR and 

IMR 
We compare the network I/O and disk I/O 

performance among the proposed method DIMR, 

IMR, which stores dada in memory rather than stores 

data in disk and sends data over network, and 

traditional MR. In this subsection, we describe the 

disk operation times and network resource under 

different operator methods, DIMR, MR, and IMR, in 

different algorithms, K-Means, PSO, SA, and GA. 

 

 
Figure 11 Bandwidth Consumption  

Fig. 11 shows the bandwidth consumption after 

normalization under different operator methods, 

DIMR, MR, and IMR, in different algorithms, 

K-Means, PSO, SA, and GA. It can be seem from Fig. 

11 that MR and IMR consume the same bandwidth in 

different algorithms, because MR and IMR will send 

the intermediate data and output data to the next node 

to compute. The MR and IMR have no ability for the 

node to switch various works, and fix the task 

category for each node, called Map function or 

Reduce function. Different from two other 

approaches, DIMR will decide the task category 

automatically, and turn the node, which keeps the 

most key value, to the next Phase task category in 

local area. Therefore, DIMR can reduce the 

bandwidth consumption and avoid the network I/O 

Bottleneck and increase performance. 

 

6   Conclusions  
With Map function and Reduce function, 

MapReduce can provide a high performance and 

simple operating environment. The traditional 

MapReduce spend too much effort on waiting Map 

and Reduce to store the information into file system, 

which makes it unsuitable for applications with high 

ratio data transfer. In this paper, we propose a novel 

MapReduce Runtime System – DIMR. Instead of 

using disk, storing data in memory not only reduce 

the execution time, but also solve the bottleneck 

problem caused by disk I/O. DIMR lowers the 

network I/O and disk I/O ratio compared to the 

traditional MapReduce runtime and greatly improve 

the system performance. 
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